
Demo: Skip Graph Middleware Implementation

Yahya Hassanzadeh-Nazarabadi∗†, Nazir Nayal†, Shadi Sameh Hamdan†, Ali Utkan Şahin†, Öznur Özkasap†,

and Alptekin Küpçü †

DapperLabs, Vancouver, Canada∗

Department of Computer Engineering, Koç University, İstanbul, Turkey†

{yhassanzadeh13, nnayal17, shamdan17, asahin17, oozkasap, akupcu}@ku.edu.tr

Abstract—Skip Graphs are Distributed Hash Table (DHT)-
based data structures that are immensely utilized as routing
overlays in Peer-to-Peer (P2P) applications. In this demo paper,
we present the software architecture of our open-source imple-
mentation of Skip Graph middleware in Java. We also present
a demo scenario on configuration and constructing an overlay
of Skip Graph processes in a fully decentralized manner. Our
implementation is capable of hosting data objects at the Skip
Graph processes and serving as a P2P data storage platform as
well. Our middleware implementation provides an open-source
platform to support Skip Graph-based applications on top of it.

Index Terms—Skip Graph, Overlay, P2P, Distributed Hash
Table, Java, Implementation.

I. INTRODUCTION

Skip Graphs [1] are a distributed key-value store of objects.

They represent each object by a node, maintain it on distinct

Skip Graph processes, and make it accessible to other pro-

cesses’ queries. Following this behavior, they are regarded as

a type of Distributed Hash Table (DHT) class of distributed

data structures. In this distributed systems realization of Skip

Graphs, a node is either a process (i.e., peer) or a data object,

and is identified with a network address and two distinct keys:

a name ID and a numerical ID. Having n nodes in a Skip

Graph overlay, each nodes needs to only maintain a lookup

table of O(log n) many other nodes. With solely relying on

its lookup table, each node can find the (IP) address of other

nodes in a fully decentralized way by searching for their name

ID [2] or numerical ID [1]. Both search protocols are done

with a message complexity of O(log n). Due to its scalability,

logarithmic message complexity, and load balancing, Skip

Graphs support an extensive domain of applications including

Peer-to-Peer (P2P) cloud storage [3], [4], [5], sensor networks

[6], and blockchains systems [7], [8].

Despite the aforementioned examples of the research and

development domains on Skip Graphs, there is no reliable

and open-source implementation of Skip Graphs as distributed

systems middleware. To provide an open-source platform that

is capable of hosting Skip Graph-based applications on top

of it, in this demo paper we present the first open-source

implementation of the Skip Graph middleware in Java [9] with

the following list of features:

Decentralization: Running independent instances of our

Skip Graph middleware builds up a P2P Skip Graph overlay

in a fully decentralized manner. By the decentralization, we

mean the setup in which no specific process is in charge of

bootstrapping others.

Process-level Operations: Our implementation supports the

basic Skip Graph operations including joining and leaving the

overlay as well as searching for other Skip Graph processes

based on either their name ID or numerical ID.

Distributed Data Objects: Our implementation of Skip

Graph supports the notion of distributed data objects. Dis-

tributed data objects are data objects (e.g., files) that are

distributed across the processes of Skip Graph overlay [10].

This allows Skip Graph processes to represent the data objects

they own as Skip Graph nodes. In this implementation, the

numerical ID of data object nodes is assigned as the hash

value of their corresponding data objects using a collision-

resistant hash function. Representing numerical IDs as hash

values provides a one-to-one mapping between the numerical

ID space and data objects. In this way, each data object is

uniquely identified by its numerical ID. The approach for

name IDs is different, and the name IDs can be assigned by

the developer, without any uniqueness constraint. This allows

exposing attributes in the name IDs and provides decentralized

attribute-based query processing over the data objects that are

maintained on a Skip Graph. We discuss this idea in more

detail in [7]. The address of a data object node is the same as

its owner process. Hence, any search query for the identifiers

of a data object is routed to and answered by its corresponding

owner process. By supporting distributed data objects, our Skip

Graph implementation can be utilized as other DHTs in their

applications that involve maintaining distributed data objects,

e.g., Chord [11]. Moreover, this supports applications of Skip

Graphs that rely on the storage functionality of data objects

as key-value pairs.

Layered Architecture: In our implementation, the Skip

Graph middleware is decoupled into two layers: the Skip

Graph overlay and the underlying network. The Skip Graph

overlay is responsible for performing Skip Graph protocols.

The underlying network provides end-to-end communication

among Skip Graph processes, and enables them to function

properly. The layered architecture supports the independency

of the Skip Graph protocols functionality from the underlying

network protocol. This provides a modular design where a

vast variety of underlying network protocols can be employed

to support Skip Graph overlay protocols, e.g., Java Remote

Method Invocation (RMI) [12], gRPC [13], Distributed Shared

Memory (DSM) [14], Transmission Control Protocol (TCP),

and User Datagram Protocol (UDP) [15].

Logging: Our implementation provides logging function-



Figure 1: An overview of the layered architecture of the Skip Graph middleware in our

implementation. The solid horizontal arrow corresponds to a real peer-to-peer

communication via the underlying network. The dashed horizontal arrows correspond

to the realization of services through the underlying network.

ality for Skip Graph middleware using Apache Log4j [16],

which is a Java-based logging framework. In our implementa-

tion, we utilize several levels of Apache Log4j logging to cover

different purposes. By default, we enable info-level logging

for all high-level operations occurring in the Skip Graph

process, e.g., joining and leaving the overlay, putting and

getting data objects, and initiating and routing search queries.

To facilitate debugging, we enable debug-level logging to

scrutinize the intermediate steps the process takes to perform

an operation, e.g., updating a lookup table entry. Likewise,

we enable error-level logging to report the errors occurring

during the Skip Graph protocol execution, e.g., duplicate visit

of a process on the same search query. This logging feature

establishes the performance monitoring and diagnostic features

especially in deployments over the cloud computing platforms.

For example, in deploying each Skip Graph process as a

Compute Engine instance in Google Cloud Platform (GCP),

the StackDriver module of GCP is configured to collect the

individual logs of the processes, aggregate them all, and

provide digest reports on their performance accordingly in

the StackDriver console. It also enables performing arbitrary

queries on the logs to diagnose a distributed error (e.g.,

distributed deadlock) on the overlay of Skip Graph processes.

II. SOFTWARE ARCHITECTURE

Figure 1 represents the software architecture of Skip Graph

middleware instances as well as their interactions. The Skip

Graph software architecture in our implementation follows

a layered approach. Layers of each Skip Graph middleware

instance from top to bottom are: API, Overlay, Adapter, and

Communication.

The Abstract Programming Interface (API) layer is the

front-end layer of our Skip Graph middleware implementation.

It represents a Skip Graph process to the user. The represen-

tation is done by exposing a set of functions, e.g., the search

for numerical ID query. The API layer is responsible to take

the function calls from the user, process them by interacting

with the Overlay layer, and return the result to the user.

The Overlay layer maintains the set of local Skip Graph

nodes that this instance of middleware owns. By the instance

of middleware, we mean the corresponding Skip Graph pro-

cess of the middleware. The set of local nodes consists of

a peer that runs the process, as well as all the data objects

that the peer hosts. The Overlay layer is responsible for

representing these local nodes in the Skip Graph overlay, and

making them accessible and retrievable by other processes of

the system. The Overlay layer also takes the function calls

from the API layer, and process them either locally, or by

interacting with the Adapter layer.

The Adapter layer is the broker [15] between the Overlay

and Communication layers, and handles all the access calls

between these two layers. Both the Overlay and Communica-

tion layers register themselves to the Adapter layer and then

they can invoke each other through that layer. The benefits

of having an adapter layer are two-fold. First, it provides a

transparent node-to-node communication service to the Over-

lay layer. In other words, handling the (local) queries about

the local nodes at an Overlay layer instance is done in the

same way as the remote queries about nodes owned by another

Overlay instance. Without the Adapter layer, the Overlay layer

should be self-aware of all the nodes that it manages at the

local process. It should handle the queries about the local

nodes locally while handling the queries about the remote

nodes via the underlying network. However, with the Adapter

layer in place, all queries are going through the Adapter

layer, and then depending on the query being about a local or

remote node, it is bounced back to the local Overlay instance

or is forwarded to the underlying network, respectively. The

second key benefit of having the Adapter layer in place is

that it provides interface independence interactions among the

Overlay and Communication network. In other words, neither

of these two layers should be aware of each other as well

as each other’s interface. Rather, they both are sufficient to

comply with the interface of the Adapter layer. As explained

later, this enables the utilization of a vast variety of underlying

network protocols at the Communication layer without the

need to change anything at the Overlay layer.

The Communication layer is responsible for providing peer-

to-peer communication in the underlying network. It takes a

query for a remote Skip Graph process from the Adapter layer

and sends it to the target process via the underlying network.

Similarly, it takes the incoming traffic for the Skip Graph

process and passes that to the Adapter layer. The Commu-

nication layer in our implementation of Skip Graph supports

a large array of network protocols including Java Remote

Method Invocation (RMI) [12], gRPC [13], Distributed Shared

Memory (DSM) [14], Transmission Control Protocol (TCP),

and User Datagram Protocol (UDP). The Communication layer

is also capable of being configured by the custom protocols

that are developed by the user.

III. SAMPLE DEMO SCENARIO

Listing 1 represents a sample Skip Graph middleware in-

stance configuration. In our implementation, a Skip Graph pro-

cess is configured by specifying its features in config.yaml

file that is located at the root of the source code [9]. In

this Listing, config.version represents the version of the

configuration file, which defines how the parameters in this file

should be interpreted. Depending on the version, configuring



1 config:

2 version: 1.0

3

4 network:

5 protocol: RMI

6 port: 1099

7

8 process:

9 version: 1.0

10 name_id:

11 protocol: self-assigned

12 value: 0b00110101

13 numerical_id:

14 protocol: randomized

15 storage:

16 address: /usr/local/skipgraph

Listing 1: A sample config.yaml file for Skip Graph middleware

some parameters may be mandatory or optional. The optional

parameters are set to a default value by the Skip Graph process.

However, skipping mandatory configuration parameters results

in the Skip Graph process terminating with an error indicating

there are not enough parameters to configure, and listing up

the missing ones.

network.protocol defines the protocol that the Com-

munication layer of Skip Graph is operating on. The current

implementation supports RMI, DSM, gRPC, TCP, and UDP.

The developer can also develop any arbitrary custom network

protocol and configure it as detailed in [9]. network.port

defines the port number that the Skip Graph process exposes

for network.protocol.

The process attribute spans the configuration param-

eters of the process at the Skip Graph protocol level.

process.version defines the version of the Skip Graph

process software. Specifying the version enables remote pro-

cesses to negotiate and acknowledge each others’ versions

before engaging in the Skip Graph protocol. This approach

counters the protocol-level errors due to inconsistent ver-

sions at which Skip Graph processes are operating on.

process.name_id.protocol represents the name ID

assignment protocol. The current version supports the self-

assigned and randomized modes. However, any customized

name ID assignment protocol [17] can be developed and

configured. The self-assigned approach of name IDs implies

the name ID is defined by the configuration file, and re-

quires the file to have a process.name_id.value field.

The name ID value can be either in Binary (i.e., 0b) or

Hexadecimal format (i.e., 0x). In both cases, the maximum

length of name ID is 256 bits to be compatible with SHA3-

256 format [18]. If the self-assigned name ID by the user

is shorter than 256 bits, it is extended by zeros, i.e., zeros

are added to its right to reach 256 bits in length. The

randomized name ID protocol takes the SHA3-256 value of

the IP address and port number of the process as its name

ID. process.numerical_id.protocol represents the

numerical ID assignment protocol. Similar to the name ID, it

can be self-assigned, randomized, or a user defined protocol.

storage.address is an optional field representing the

local persistent storage path of this process on the disk. If

no address is provided, the process establishes its persistent

storage in its root directory. The persistent storage maintains

the state of the Skip Graph process, and helps it recover swiftly

from a failure, and continue from where it left off.

Once the configuration file is ready, the user executes the

Skip Graph middleware as detailed in [9]. Upon startup, to

join the Skip Graph overlay, the process asks for the address

(i.e., IP and port number) of its introducer. The introducer is

one arbitrary node of Skip Graph overlay that helps a new

Skip Graph process joins the overlay [17]. After joining the

overlay, the middleware provides command-line access for the

user, which supports adding or removing a data object, and

searching for a name ID or numerical ID. By inserting a data

object in Skip Graph overlay, the process represents itself as

the host of the object, and any search for the name ID or

the numerical ID of that object is routed to this Skip Graph

process. Also, a search for name ID or numerical ID that is

initiated by a Skip Graph process is routed through the Skip

Graph overlay and is replied to the initiator by all the processes

that hold the target name or numerical ID, respectively. The

result of each operation is displayed to the user in Log4j

format.

REFERENCES

[1] J. Aspnes and G. Shah, “Skip graphs,” ACM TALG, 2007.
[2] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Laras: Local-

ity aware replication algorithm for the skip graph,” in IEEE/IFIP NOMS,
2016.

[3] ——, “Decentralized utility-and locality-aware replication for heteroge-
neous dht-based p2p cloud storage systems,” IEEE TPDS, 2019.

[4] ——, “Decentralized and locality aware replication method for dht-
based p2p storage systems,” in FGCS. Elsevier.

[5] Y. Hassanzadeh-Nazarabadi and Ö. Özkasap, “Elats: Energy and locality
aware aggregation tree for skip graph,” in IEEE BlackSeaCom, 2017.

[6] P. Desnoyers, D. Ganesan, and P. Shenoy, “Tsar: a two tier sensor
storage architecture using interval skip graphs,” in Proceedings of the

3rd international conference on Embedded networked sensor systems,
2005.

[7] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Lightchain:
A dht-based blockchain for resource constrained environments,” arXiv

preprint arXiv:1904.00375, 2019.
[8] Y. Hassanzadeh-Nazarabadi, N. Nayal, S. Sameh Hamdan, Ö. Özkasap,

and A. Küpçü, “A containerized proof-of-concept implementation of
lightchain system,” in ICBC. IEEE, 2020.

[9] “Skip graph node:https://github.com/yhassanzadeh13/skipgraphnode.”
[10] W. Emmerich, Engineering distributed objects. John Wiley & Sons

Software, 2000.
[11] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM, 2001.

[12] E. Pitt and K. McNiff, Java. rmi: The remote method invocation guide.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[13] grpc.io, “Introduction to grpc,” https://grpc.io/docs/what-is-grpc/
introduction/, May 2020.

[14] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “Treadmarks: Shared memory computing
on networks of workstations,” Computer, 1996.

[15] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and

paradigms. Prentice-Hall, 2007.
[16] Apache, “Apache log4j 2,” https://logging.apache.org/log4j, May 2020.
[17] Y. Hassanzadeh-Nazarabadi, A. Küpçü, and Ö. Özkasap, “Locality aware

skip graph,” in IEEE ICDCSW, 2015.
[18] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, and R. Van Keer,

“Keccak implementation overview, version 3.2,” 2012.

View publication statsView publication stats
Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

